The Emerging Role of Transcranial Magnetic Stimulation for Treatment of Depression

Philip G. Janicak, M.D.
Professor of Psychiatry
Rush University Medical Center
Chicago, Illinois

NAMI Illinois
Mental Health Educational Conference
October 16, 2009
Disclosure Information
for Philip G. Janicak, M.D.

- **Grant-Research Support**
 - Janssen Pharmaceutica; Neuronetics; Otsuka

- **Consulting/Advisory Agreements**
 - AstraZeneca; Bristol-Myers Squibb; Janssen Pharmaceutica; Neuronetics

- **Speaker’s Bureau**
 - AstraZeneca; Bristol-Myers Squibb; Janssen Pharmaceutica; Neuronetics; Pfizer
Major Goals

- Better appreciate the need for alternative treatments to manage major depression
- Consider the role of **neuromodulation** for treatment of major depression
- Focus on the definition, administration and adverse effects associated with **transcranial magnetic stimulation**
Impact of Depression

- WHO predicts major depression will be ranked as second most disabling disease by 2020
- In the US, major depression is the second leading cause of disability in women 15-44 years of age
- Complex interrelationship with several medical comorbidities
Major Depression

14 Million Adults
U.S.

7.2 Million Treated

6.8 Million Untreated

3.2 Million Adequately Treated

4 Million Poorly Served

• Inadequate response
• Intolerant to side effects

Kessler RC; Berglund P; Demler O; et al. The Epidemiology of Major Depressive Disorder: Results From the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289:3095-3105.
In MDD, “Adequate” Treatment Is Difficult to Achieve1-3

Factors contributing to inadequate treatment include:

- Adequate Dosage
- Adequate Duration
- Lack of Efficacy
- Poor Tolerability
- Nonadherence
- Safety Issues
- Comorbidities

Therapeutic Neuromodulation

- Delivers electrical current to nervous tissue
- Based on concept of functional disturbances in distributed neuronal circuits
- Episodic impact on brain
- Usually no sustained systemic effects

Neuromodulation Techniques

SEIZURE
- Electroconvulsive Therapy
- Magnetic Seizure Therapy*
- FEAST*

NON-INVASIVE

NO SEIZURE
- Bright light therapy
- Transcranial Magnetic Stimulation
- Vagus Nerve Stimulation
- Deep Brain Stimulation*
- tDCS*

INVASIVE

*Not FDA approved.
Electroconvulsive Therapy

- Access/patient acceptance
- Optimal administration
- Relapse rates
- Adverse effects
 - Cognitive
- Cost
Vagus Nerve Stimulation

- **Efficacy**
 - May benefit TRD

- **Advantages**
 - Absence of adverse cognitive and psychomotor effects
 - Absence of antidepressant-related AEs or drug interactions
 - Improved adherence

- **Disadvantages**
 - Acute vs longer-term efficacy
 - Cost
Transcranial Magnetic Stimulation (TMS)
TMS: Definition

- **Pulsed magnetic fields** of ~1.5 Tesla in strength
- Magnetic fields **pass unimpeded** approximately 2–3 cm in depth
- Induces a **focal electrical current** in cortical tissue
- Produces **local and distal functional changes** in the target neural circuitry
TMS: Evidence for Antidepressant Effect

<table>
<thead>
<tr>
<th></th>
<th>Meds</th>
<th>ECT</th>
<th>TMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active in animal behavioral models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Porsolt forced swim test</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Active in animal biologic models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increases in brain monoamine turnover</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Induction of neurogenesis genes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Normalization of stress (HPA) axis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Active in human biologic models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Normalization of stress (HPA) axis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Delay in REM latency (sleep)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Increases in RCBF and glucose metabolism in CNS mood circuitry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Empirically effective in RCTs for the treatment of MDD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

TMS: Therapy System

- **Electrical source**
- Large capacitors
- Magnetic **stimulator**
- **Cable** with minimal resistance
- Stimulating **coil**
- Computer **program**
 - produces a pattern of magnetic pulses over a brief timeframe
TMS: Stimulation Parameters

- Motor threshold (80–120%)
- Frequency (<1 Hertz; 1–20 Hertz)
- Stimulation train (2–5 sec)
- Intertrain intervals (5–60 sec)
- Coil configuration and placement
- Frequency of stimulation
 - Single versus repetitive (rTMS)
 - Slow versus rapid rTMS
TMS: Key Terms

- **Pulse Train**: group of electromagnetic pulses followed by non-pulse interval
- **Stimulation Time**: duration of pulse train, measured in seconds
- **Interval**: time period between pulse trains, measured in seconds

Single Magnetic Pulse

Pulse Train (10 pulses/sec)

Treatment Session

- Time: 4 sec, 26 sec, ~40 min
TMS: Meta-analysis of Early vs Later Studies

* Standardized mean difference between active and sham rTMS groups.
† NeuroStar TMS Therapy clinical trials not included in analysis.

Neuronetics TMS Study Design

- **Real** TMS versus **sham** procedure
- 301 treatment-refractory, unipolar **major** depressed subjects
- **Multi-site** trial (23 centers)
- **MADRS**, HAMD$_{17,24}$, IDS-SR 30, GGI-S

Neuronetics TMS Study Design

Randomized, Controlled Study1,2,4 ‘101’

Open-Label Crossover Study2,3,4 ‘102’

Improved

Maintenance of Effect Study2,4,5 ‘103’

Not Improved

Improved

Inclusion Criteria

- Male or female outpatients meeting DSM-IV diagnostic criteria for major depressive episode, single or recurrent, of moderate to severe symptom severity (CGI-S > 4)
- Baseline HAM-D 17 total score > 20, Item 1 > 2
 - Interim symptom severity criterion prior to randomization, HAMD 17 total score > 18, and < 25% decrease in total score from baseline
- Treatment resistance defined by failure to respond to at least one and no more than four antidepressant treatments in current episode
 - Using the Antidepressant Treatment History Form (ATHF)
- Duration of current episode ≤ 3 years
- Clinically appropriate to discontinue existing antidepressant

Neuronetics 2100 CRS™

Overall Efficacy

MADRS Total Score
(Baseline to Endpoint Change)

HAMD-24 Total Score
(Baseline to Endpoint Change)

* P<.05.
LOCF, LS mean.
MADRS Response and Remission Rates: Overall Population

MADRS Response Rates
(50% Improvement from Baseline)

MADRS Remission Rates
(MADRS Total Score <10)

* = Active TMS

** = Sham TMS

* P < .05 vs sham, ** P < .01 vs sham, LOCF analysis

Efficacy in Indicated Population

MADRS Total Score (Baseline to Endpoint Change)1

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active TMS</td>
<td>0</td>
<td>-6.5</td>
<td>-6.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>Sham TMS</td>
<td>0</td>
<td>-6.2</td>
<td>-5.7</td>
<td>-4.3</td>
</tr>
</tbody>
</table>

** $P<.01$

LOCF analysis of evaluable study population.

HAMD-24 Total Score (Baseline to Endpoint Change)2

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active TMS</td>
<td>0</td>
<td>-7.5</td>
<td>-6.0</td>
<td>-5.5</td>
</tr>
<tr>
<td>Sham TMS</td>
<td>0</td>
<td>-7.2</td>
<td>-5.7</td>
<td>-4.3</td>
</tr>
</tbody>
</table>

** $P<.01$

LOCF analysis of evaluable study population.

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Active TMS (n=165) n (%)</th>
<th>Sham TMS (n=158) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Eye pain</td>
<td>10 (6.1)</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Toothache</td>
<td>12 (7.3)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>General disorders and site-administration conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Application-site discomfort</td>
<td>18 (10.9)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>• Application-site pain</td>
<td>59 (35.8)</td>
<td>6 (3.8)</td>
</tr>
<tr>
<td>• Facial pain</td>
<td>11 (6.7)</td>
<td>5 (3.2)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Muscle twitching</td>
<td>34 (20.6)</td>
<td>5 (3.2)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pain of skin</td>
<td>14 (8.5)</td>
<td>1 (0.6)</td>
</tr>
</tbody>
</table>

*Adverse events occurring in the active treatment group at a rate of \(\geq 5\% \) and at least twice the rate of sham.

Time Course for These Adverse Events

Serious Adverse Events

<table>
<thead>
<tr>
<th>Serious Adverse Events</th>
<th>Sham (N=158)</th>
<th>Active (N=165)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>General disorders and site administration conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Application site pain</td>
<td>0</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>- Facial pain</td>
<td>0</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Burns, first degree</td>
<td>0</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>- Overdose (Operator error, Asymptomatic)</td>
<td>0</td>
<td>4 (2.4)</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Depression</td>
<td>3 (1.9)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>- Intentional self injury</td>
<td>1 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>- Suicidal ideation</td>
<td>3 (1.9)</td>
<td>1 (0.6)</td>
</tr>
</tbody>
</table>

Acute Treatment Phase data shown

Emergent Suicidal Ideation

*Shift Score indicates the percent of subjects who experienced a change in HAMD Item 3 score from 0 or 1 at baseline to 3 or 4 at later point in time.

Auditory Threshold

Neurocognitive Testing

All contrasts non-significant, $P > .05$

5 of 8 published trials reported antidepressant equivalence between TMS and ECT.

1 trial found UL ECT plus medication superior to TMS monotherapy in MDD with psychosis but comparable in efficacy to TMS for MDD without psychosis.

1 trial reported UL ECT to be superior to TMS.

1 trial reported BL ECT to be superior to TMS.

TMS versus ECT Study: HAMD$_{24}$ Scores

TMS versus ECT Study: Response Rates

<table>
<thead>
<tr>
<th>Response Rate</th>
<th>HAMD: ((\geq 50% \ & \ 8))</th>
<th>HAMD: ((<50% \ & \ >8))</th>
<th>TMS (n=17)</th>
<th>ECT (n=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responders</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Nonresponders</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Response Rate</td>
<td>41%</td>
<td>43%</td>
<td>41%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Fisher’s Exact Test; p=ns

TMS versus ECT Study: Adverse Effects

<table>
<thead>
<tr>
<th></th>
<th>TMS</th>
<th>ECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious adverse effects</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Mild adverse effects</td>
<td>Facial twitching</td>
<td>Short-term memory impairment</td>
</tr>
<tr>
<td></td>
<td>Erythema at site of coil placement</td>
<td>Drowsiness shortly after treatment</td>
</tr>
<tr>
<td></td>
<td>Anxiety before and during treatment</td>
<td>Postictal and anesthesia-induced confusion</td>
</tr>
<tr>
<td></td>
<td>Localized to stimulation site:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mild pain or discomfort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feelings of warmth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tapping sensation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Headache</td>
<td></td>
</tr>
</tbody>
</table>
TMS versus ECT Study: Neurocognitive Effects

- No evidence of adverse neurocognitive effects in our TMS-treated subjects.
- Further, preliminary analysis indicated improvement over baseline scores in some domains.
- This may be due to improved attention and concentration or practice effects.

TMS for Depression: Summary

- **TMS superior to sham TMS for MDD**
- **TMS may produce similar efficacy to ECT for more severe depression (5/8 trials were supportive)**
- **Serious adverse effects** (e.g., seizure, cognitive) with TMS are rare to absent

Major Goals

- Better appreciate the need for alternative treatments to manage major depression
- Consider the role of **neuromodulation** for treatment of major depression
- Focus on the definition, administration and adverse effects associated with **transcranial magnetic stimulation**
References I

